Best practices for good(ish) and
clean(ish) code

PyConZa 2022

makeamaeme.org

Why this talk

YOU CANNOT WRITE BAIIB!I{E INPYTHON

Why this talk

YOU CANNOT WRITE BAIIB!I{E INPYTHON

’ -
.a‘.'
)

-

f

T

What’s Clean Code

e Readable
e Maintainable
e Elegant

® [estable

C(ea#\ cotle o'lu) S
(oo& (i[e T was u)n'%;

g(/ sofeche who cares

M’cka&l %ﬂﬁm

Ask yourself if the code is “clean” enough

H’

Can be inherited
and enhanced by
other developers

other than the
original author

Clean Code Measurement

*
; A !
r IS fr’ l‘ 4) |
- | | ., o B il
- | ¢ J (A A -+ ' e MIN kA T
— - ’\’~
L
n “:
‘ﬁ - t . ‘WYl ‘ & ‘, =
v ™ L) <
A"r‘)
1;
‘\J’\" \
"
p— n = 4 '] ‘
— e
! ! !
| ! w | ol
‘ . {
{ = I ‘j o o P ? 1 Le
" ' ¢ | + 3 | I(. k‘.(| | .l,.r l‘/.
' J . > »
(Review) | 1| [Review | || ™
! — 1 i .\ .
| | | 1 |
! \ !
. | -— t | -~ Wosa
| . | | e T
| w {
\ ’] =
| | &
’ | | t s
| [— {t | o - oA 2
o
| R Ad l =
3 J X ! I IV A L & b
| ! -
(5Ot | -

Reproduced with the kind permission of Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m

Owning a mess, IS It worth?

What prevents clean code?

Rule of the thumb

I'll do the refactor later

Spoiler alert: “Later” never comes

Owning a mess, Is It worth?

worth?

NINEg a Mess, |

def get duplicated trips(trip):
signature = "'
for leg in trip.legs:
for segment 1n leg.segments:
signature += get_signature(segment)

company = trip.company
candidate trips = Trip.objects.filter(company=company)

candidate_signatures = []
for candidate_trip in candidate_trips:
candidate_signature = '
for 1leg in candidate_trip.legs:
for segment 1n leg.segments:
candidate_signature += get_signature(segment)
candidate _signatures (candidate_signature)

duplicated trips = []
for candidate_trip, candidate_signature in zip(candidate_trips, candidate_signatures):
1f candidate signature == signature
duplicated_trips.append(candidate_trip)

Owning a mess, IS It worth?

def get duplicated trips(trip):
signature = get_trip_signature(trip)
candildate_trips = get_candidate_trips(trip)
return [trip for trip in candidate_trips if get_trip_signature(trip) == signature]

def get _trip_signature(trip):
signature = '
for Lleg wn trip. legs:
for segment wn leg.segments:
sitgnature += get signature(segment)
return signature

def get_candudate_trips(trip):
company = trip.company

~ -

return Trip.objects.filter(company=company)

Descriptive names

d = datetume.date(2019, 4, 13)

days_since_creation = datetime.date(2019, 4, 13)

N -

The name should always represent the developer’s idea

Meaningful names

moddYmd datetime.date(2019, 4, 13)
psquint = "102"

modification_date datetime.date(2019, 4, 13)
record_wd = "102°"

Searchable names

bad
CTX RSP DICT = {}
sum = 90

¥ | I
|

_— ! ! T
W e
] | L - | | - l

CONTEXT_REPONSE
total_of_people

Class names

Classes should have noun or noun phrase
names like Customer, WikiPage, Account,
AddressParser.

Avoid words like Manager, Processor, Data
... Inthe name of a class.

A class name should not be a verb.

Method names

Methods should have verb of verb phrase
names like post_payment, delete_page, 0
save.

end date = date.add(5)

Method names should say what they do!

omments sometimes lie

"l
I

WO0J"9¥I6 VIA

{ Basmati Rice_

"
e

4)
.4

Code never lies

def 1s_billed(self, bill 1d:str) -> bool:

return self.billing_repository.exists(bill_1d)

LT element > 0:

return math.sqrt(element)

Code never lies

def 1s_billed(self, bill 1d:str) -> bool:

return self.billing_repository.exists(bill_1d)

LT element > 0:

return math.sqrt(element)

If they don't lie, they can be lazy

<0 a"ri/ ‘
ﬁMAKE’ | P delta = hxh-rlx*rl

P | | r2z = math.sqrt(delta)

Crime: using a comment to avoid programming effort.

If they don't lie, they can be lazy

delta = h*h-rlx*rl
r2 = math.sqrt(delta)

len_side b = math.sqrt(math.pow(hypotenuse, 2) - math.pow(len side a, 2))

*»

> l\?‘ .
.

. ‘.i‘&\:‘
v AR

4

o S
-

R s

AR

5
J‘(ﬁ

Crime: using a comment to avoid programming effort.

DON'T COMMENT BAD

CODE - REWRITEIT.

- Brian Kernighan

Only one thing

AU

.-(5(& Sfoon SToor‘L

Only one thing

]». .dl .

def retrieve_flight_unfo(flight_code):
flight = Flight.objects.get(code=flight_code)
passengers = Passenger.objects.filter(flight=flight)
return flight, passengers

my flight, passengers = retrieve_flight_info("A453Z")

def retrieve_flight(flight_code):
return Flight.objects.qget(code=flight_code)

def retrieve_passengers(flight):
return Passenger.object.filter(flight=flight)

my_TLlight retrieve_tTlight("A453Z")
passengers retrieve_passengers(my_tlight)

ract, extract, extract

- .

def duplicated_trips(trip):

signature = ""
for leg in trip.legs:
for segment in leg.segments:

signature += get_signature(segment)

company = trip.company
candidate_trips = Trip.objects.filter(company=company)

candidate_signatures = ||
for candidate_trip in candidate_trips:
candidate_signature = "'
for Leg in candidate_trip.legs:
for segment in leg.segments:
candidate_signature += get_signature(segment)
candidate_signatures.append(candidate_signature)

duplicated_trips = []
for candidate_trip, candidate_signature in zip(
candidate_trips, candidate_signatures
) :
if candidate signature == signature:
duplicated_trips.append(candidate_trip)

Extract, extract, extract

duplicated_trips(trip):
signature = trip_signature(trip)
candidate_trips = candidate_trips(trip)

return [trip for trip in candidate_trips if trip_signature(trip) == signature]

def trip_signature(trip):
signature = ""
for leg in trip.legs:
for segment in leg.segments:

signature += retrieve_signature(segment)
return signature

def candidate_trips(trip):

return Trip.objects.filter(company=trip.company)

Small cognitive/cyclomatic complexity

def post_comment(self):
1f self.type == 'success':
comment = 'Butild succeeded’
elif self.type == 'warning':
comment = 'Buitld had tissues'
elif self.type == 'failed':
comment = 'Buitld fatled’
else:
comment = 'Unknown status'

.post(comment, type='error')

Small cognitive/cyclomatic complexity

def get_comment(self):
comments = {
'success': 'Build succeeded’,
‘'warning': 'Build had i1ssues',
'fatled': 'Build fatiled'
}

return comments.get(self.type, 'Unknown status')

post _comment(self):
comment = self.get_comment(self)
self.post(comment, type=self.type)

Advantages of measuring software complexity

1. Better Test Coverage

e

' R b
| FIND YOURILACK OF UNIT TESTS DISTURBING.

Advantages of measuring software complexity

3. Reduced Risk

KEEP IN MIND THAT TM ...\WJOW. IT'S LIKE A SALAD RECIPE. | | ITS LIKE. SOMEONE TOOK A
SEUF-TAUGHT, 90 MY CODE. THIS |5| LIKE BEING IN WURITTEN BY A CORPORATE. | | TRANSCRIFT OF A COUPLE
MAY BE A LITTLE MESSY, A HOUSE BUILT BY A LAWYER DSING A PHONE | | ARGUING AT IKEA AND MADE
LEMIE SFE- CHILD USING NOTHING AUTOCORRECT THAT ONLY RANDOM EDITS UNTIL IT

™M SURE BUT A HATCHET AND A KNEW EXCEL FORMULAS, COMMILED WITHOUT ERRORS.

' C o OKAY’ T RERD
ITS H&E. PICTURE. OF A HOUSE., K oy T REA

7187 |t | =8

Advantages of measuring software complexity

3. Lower Costs

The relative cost of fixing bugs

120
100
80

60

40

20

® Requirements MDesign M Code 8 Test M Production

aw of Demeter ("only 1 dot”

Adke a dog lo walk

When | agreed to moving

for leg 1n dog. legs:
leg.move(forward=3)

dog.move(forward=3)

class Dog:
def move(self, forward):
for leg in self. legs:
leg.move(forward=3)

- : -.- . -r-j - : ' ' -~ ‘.-‘
Lwasmoyiniormedfofithe method

;S book.pages().last().text ()

Lieberherr, K.J.; Holland, I.M. (September 1989). "Assuring good style for object-oriented programs". IEEE Software. 6 (5): 38—-48. doi:10.1109/52.35588.

https://dx.doi.org/10.1109/52.35588
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2F52.35588

Law of Demeter: drawbacks

It won't apply to cats

cataddictsa .

these walks were your/idea

‘ \
> o L
& 4
' . :’Aﬁ “ l
T

"Premature
optimisation is
the root of all
evil”

— Donald Knuth

Continuous Refactoring

“The most common “presenting” pathology in the hoarded
codebases I've seen — by far — is that developers don’t feel
they have time and/or permission to refactor code.”

— Sarah Mei1

[Refactoring is] a very core technique to the whole agile way of
thinking because it fits in with the whole way in which we can

build software in a way that it can change easily ... Refactoring

is central to this because refactoring is a disciplined way of
making changes. ”

— Martin Fowler

Tests matter

"How can | make sure that if | change this, nothing
else breaks?”

... also experience matter

Most popular code smells

Duplication Improper use of inheritance
Unnecessary complexity Convoluted Code
Useless/misleading comments Tight coupling
No Code Reviews Over abstraction
Huge methods Design Pattern overuse
Poor naming No test

Commented code / code that’s not used Improper usage of private and public objects

Thanks@¥

O github.com/ernestoarbitrio twitter.com/ pamaron

Questions? &

http://twitter.com/__pamaron__

