
Best practices for good(ish) and 
clean(ish) code

PyConZa 2022



Who am I



Why this talk



Why this talk



What’s Clean Code

•Readable


•Maintainable


•Elegant


•Testable







Can be inherited 
and enhanced by 
other developers 

other than the 
original author

Ask yourself if the code is “clean” enough



Clean Code Measurement



Owning a mess, is it worth?



What prevents clean code?

I’ll do the refactor later

Rule of the thumb

Spoiler alert: “Later” never comes



Owning a mess, is it worth?



Owning a mess, is it worth?



Owning a mess, is it worth?



Descriptive names

The name should always represent the developer’s idea



Meaningful names



Searchable names



Class names

Classes should have noun or noun phrase 
names like Customer, WikiPage, Account, 

AddressParser.


Avoid words like Manager, Processor, Data 
… in the name of a class.


A class name should not be a verb.



Method names

Methods should have verb of verb phrase 
names like post_payment, delete_page, 

save.


Method names should say what they do!



Comments sometimes lie



Code never lies



Code never lies



If they don’t lie, they can be lazy

Crime: using a comment to avoid programming effort.



If they don’t lie, they can be lazy

Crime: using a comment to avoid programming effort.





Only one thing



Only one thing



Extract, extract, extract



Extract, extract, extract



Small cognitive/cyclomatic complexity

🙁



Small cognitive/cyclomatic complexity

😊



Advantages of measuring software complexity

1. Better Test Coverage



Advantages of measuring software complexity

3. Reduced Risk



Advantages of measuring software complexity

3. Lower Costs



Law of Demeter (“only 1 dot”)

Lieberherr, K.J.; Holland, I.M. (September 1989). "Assuring good style for object-oriented programs". IEEE Software. 6 (5): 38–48. doi:10.1109/52.35588.

Ask a dog to walk

🙅 book.pages().last().text()

https://dx.doi.org/10.1109/52.35588
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2F52.35588


Law of Demeter: drawbacks

it won't apply to cats



“Premature 
optimisation is 
the root of all 
evil”
— Donald Knuth



Continuous Refactoring
“The most common “presenting” pathology in the hoarded 
codebases I’ve seen — by far — is that developers don’t feel 
they have time and/or permission to refactor code.”
— Sarah Mei

[Refactoring is] a very core technique to the whole agile way of 
thinking because it fits in with the whole way in which we can 
build software in a way that it can change easily … Refactoring 
is central to this because refactoring is a disciplined way of 
making changes. ”
— Martin Fowler



Tests matter

“How can I make sure that if I change this, nothing 
else breaks?”




… also experience matter
Most popular code smells

Duplication Improper use of inheritance

Unnecessary complexity Convoluted Code


Useless/misleading comments Tight coupling

No Code Reviews
 Over abstraction

Huge methods Design Pattern overuse

Poor naming No test


Commented code / code that’s not used Improper usage of private and public objects



Thanks❤
github.com/ernestoarbitrio twitter.com/__pamaron__

Questions? 🤔

http://twitter.com/__pamaron__

