
Garbage
Collection in

Python
PyConZA 2022

Durban

Elijah Okello
Software Engineering Student

Makerere University, UG

Garbage !

Garbage is anything unwanted

Memory Management and Garbage Collection!

Any set of objects in memory that are no longer being used by a process is
considered garbage.

Originally, programmers

did manual memory

Management.

Automatic Memory Management

Disadvantages

● Additional memory usage
● Additional computation

Advantages outweigh disadvantages
Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Integrated_circuit

How does CPython collect Garbage ?

CPython is the reference implementation of the Python Programming Language.
Implemented in C and Python, it is the most widely used implementation of the
Python Programming Language.

python -c 'import platform; print(platform.python_implementation())'

CPython GC Algorithms

● Reference Counting
● Generational Garbage Collection

Reference Counting

The runtime keeps track of all references to an object in memory.

>>> import sys

>>> a = 'my-string'

>>> sys.getrefcount(a)

2

>>> mylist = [a] # Make a list with a as an element.

>>> mydict = { 'key': a } # Create a dictionary with a as one
of the values.

>>> sys.getrefcount(a)

5

Generational Garbage Collector

Why do we need the generational garbage collector

>>> class Student(object):

... pass

...

>>> st1 = Student()

>>> st1.obj = st1

>>> del st1

Reference Cycle is when an object references itself.

Generational Garbage Collector Cont’d

Terminology

● Generation
● Threshold

1st Gen 2nd Gen 3rd Gen

700 10 10

Increasing age

How to interact with the CPython GC

>>> import gc

>>> gc.get_threshold()

(700, 10, 10)

>>> gc.get_count()

(410, 5, 7)

>>> gc.get_collect()

30

>>> gc.set_threshold(500,10,10)

>>>

BEST PRACTICES FOR GC in Cpython

Chances are you may not really need to change the GC behaviour in Cpython.

The GC is fine tuned for optimal results.

For special use cases you can manipulate it to your satisfaction using the
previously stated methods.

PyPy is an alternative implementation of the Python programming language to
CPython. PyPy often runs faster than CPython because PyPy uses a just-in-time
compiler

pypy3 -c 'import platform; print(platform.python_implementation())'

Garbage Collection in pypy

Pypy GC Algorithms

The pypy gc algorithm is chosen at the point of building the executable from
source using the --gc=NAME option
pypy ../../rpython/bin/rpython --opt=jit —-gc=marksweep

● Semispace Copying GC
● Generational GC
● Hybrid GC
● Mark and Sweep
● Mark and Compact
● Incminimark GC [default]

Incminimark GC

PyPy’s default garbage collector is called incminimark - it’s an incremental,
generational moving collector

Young
Objects

Nursery

Arenas or
memory
allocations

PYPY_GC_NURSERY

The collection for the older
generations is done
incrementally and this
allows the applications not
to have very long pause
times as the gc is making a
collection

How to interact with the Pypy GC. Incminimark

Incminimark GC is configurable through a set of environment variables

PYPY_GC_NURSERY : Set the size of the nursery beyond which collection happens

PYPY_GC_NURSERY_DEBUG : If set to non-zero, will fill nursery with
garbage, to help debugging

https://doc.pypy.org/en/latest/gc_info.html#semi-manual-gc-management

https://doc.pypy.org/en/latest/gc_info.html#semi-manual-gc-management

Semi-manual GC management

>>> import gc

>>> gc.disable()

>>> gc.enable()

>>> gc.collect()

28

Best Practices in pypy

The nursery size is a very crucial variable - depending on your workload (one or many processes) and
cache sizes you might want to experiment with it via PYPY_GC_NURSERY environment variable.

In low latency applications like games, you might want to control precisely when the gc runs. You do so by
disabling the gc at certain point in your program gc.disable() and then collecting gc.collect().

IronPython

IronPython is an open-source implementation of the Python programming
language which is tightly integrated with .NET.

It uses the same GC algorithms as CPython ie Reference Counting and
Generational GC with some changes

http://www.opensource.org/licenses/apache2.0.php

Jython

The Jython project provides implementations of Python in Java, providing to Python the
benefits of running on the JVM and access to classes written in Java.

Jython uses Garbage Collection algorithms provided by the JVM.

https://www.python.org/
https://go.java/index.html

Additional material for further study

https://docs.python.org/3/library/gc.html

https://doc.pypy.org/en/latest/gc_info.html#semi-manual-gc-management

https://rpython.readthedocs.io/en/latest/garbage_collection.html#mark-and-sweep

https://docs.python.org/3/library/gc.html
https://doc.pypy.org/en/latest/gc_info.html#semi-manual-gc-management
https://rpython.readthedocs.io/en/latest/garbage_collection.html#mark-and-sweep

