
SOFTWARE TESTING ON AN
ASTRONOMICAL SCALE

September 2022 / CASPER 2022

James Smith

Outline

• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

Outline
• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

You’re familiar with...

• Software Testing

• Reasons and benefits
• Tools

• pytest

• but there are others!

You’re familiar with...

• Software Testing

• Reasons and benefits

• Tools

• pytest

• but there are others!

You’re familiar with...

• Software Testing

• Reasons and benefits
• Tools

• pytest

• but there are others!

You’re familiar with...

• Software Testing

• Reasons and benefits
• Tools

• pytest

• but there are others!

You’re familiar with...

• Software Testing

• Reasons and benefits
• Tools

• pytest

• but there are others!

Main Takeaways

• Testing is a great concept.

• Methodology and tools can be applied to much bigger systems than just code
snippets.

Main Takeaways

• Testing is a great concept.

• Methodology and tools can be applied to much bigger systems than just code
snippets.

Outline
• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

Re-cap

• MeerKAT Radio Telescope is getting an extension.

• The correlator is the part which digitally combines signals from all the
individual antennas.

• The correlator being built for MeerKAT Extension is (possibly) the world’s first
real-time correlator written (almost) entirely in Python.

Re-cap

• MeerKAT Radio Telescope is getting an extension.

• The correlator is the part which digitally combines signals from all the
individual antennas.

• The correlator being built for MeerKAT Extension is (possibly) the world’s first
real-time correlator written (almost) entirely in Python.

Re-cap

• MeerKAT Radio Telescope is getting an extension.

• The correlator is the part which digitally combines signals from all the
individual antennas.

• The correlator being built for MeerKAT Extension is (possibly) the world’s first
real-time correlator written (almost) entirely in Python.

Correlator Context

A look inside...

Need for testing

Lots of functionality to verify

Outline
• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?

• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Systems Engineering
• Formal discipline for designing and managing complex systems over life cycle

• Started at Bell Labs in the 40s, influenced heavily by military procedures

• Typically (relatively) document-heavy

• Qualificatyion report - Does the system you’ve built meet spec?
• Pytest’s default output - not good enough. We need

• measurements

• graphs

• tables

• etc.

• To show evidence of meeting spec.

• Very rigorous, quite boring to do manually. Fortunately, pytest can still help!

Outline
• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

What do we test?

A non-exhaustive list:

• Signal Processing correctness

• Response to control inputs

• Correct reporting of internal state

• Fault handling

• Ultimately anything that the specifications require

What do we test?

A non-exhaustive list:

• Signal Processing correctness

• Response to control inputs

• Correct reporting of internal state

• Fault handling

• Ultimately anything that the specifications require

What do we test?

A non-exhaustive list:

• Signal Processing correctness

• Response to control inputs

• Correct reporting of internal state

• Fault handling

• Ultimately anything that the specifications require

What do we test?

A non-exhaustive list:

• Signal Processing correctness

• Response to control inputs

• Correct reporting of internal state

• Fault handling

• Ultimately anything that the specifications require

What do we test?

A non-exhaustive list:

• Signal Processing correctness

• Response to control inputs

• Correct reporting of internal state

• Fault handling

• Ultimately anything that the specifications require

How?

• Don’t re-invent the wheel (or the test framework)

• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

How?

• Don’t re-invent the wheel (or the test framework)
• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

How?

• Don’t re-invent the wheel (or the test framework)
• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

How?

• Don’t re-invent the wheel (or the test framework)
• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

How?

• Don’t re-invent the wheel (or the test framework)
• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

How?

• Don’t re-invent the wheel (or the test framework)
• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

How?

• Don’t re-invent the wheel (or the test framework)
• What you do need to invent:

• Representative test system

• Mechanism to communicate with this system

• Controlled, deterministic inputs (and environment if that’s important)

• Measurement of outputs

• Standard or ideal against which to compare

Our examples

Using pytest

• Pytest fixtures do the hard work

• Start and control a correlator (device under test)

• Start and control a digitiser simulator (input)

• Receive correlator output (measurement)

• Generate documentation

Using pytest

• Pytest fixtures do the hard work
• Start and control a correlator (device under test)

• Start and control a digitiser simulator (input)

• Receive correlator output (measurement)

• Generate documentation

Using pytest

• Pytest fixtures do the hard work
• Start and control a correlator (device under test)

• Start and control a digitiser simulator (input)

• Receive correlator output (measurement)

• Generate documentation

Using pytest

• Pytest fixtures do the hard work
• Start and control a correlator (device under test)

• Start and control a digitiser simulator (input)

• Receive correlator output (measurement)

• Generate documentation

Using pytest

• Pytest fixtures do the hard work
• Start and control a correlator (device under test)

• Start and control a digitiser simulator (input)

• Receive correlator output (measurement)

• Generate documentation

Procedures and Reports

• Detailed test procedures are an aspect of the systems engineering process

• Ideally done early - how will you prove that you’ve met spec?

• Normally a separate test procedure document

• Our approach - let the test script be the procedure (interleave prose with code)

• Thereby minismising drift

• The same fixture used for procedures, produces reports

Procedures and Reports

• Detailed test procedures are an aspect of the systems engineering process

• Ideally done early - how will you prove that you’ve met spec?

• Normally a separate test procedure document

• Our approach - let the test script be the procedure (interleave prose with code)

• Thereby minismising drift

• The same fixture used for procedures, produces reports

Procedures and Reports

• Detailed test procedures are an aspect of the systems engineering process

• Ideally done early - how will you prove that you’ve met spec?

• Normally a separate test procedure document

• Our approach - let the test script be the procedure (interleave prose with code)

• Thereby minismising drift

• The same fixture used for procedures, produces reports

Procedures and Reports

• Detailed test procedures are an aspect of the systems engineering process

• Ideally done early - how will you prove that you’ve met spec?

• Normally a separate test procedure document

• Our approach - let the test script be the procedure (interleave prose with code)

• Thereby minismising drift

• The same fixture used for procedures, produces reports

Procedures and Reports

• Detailed test procedures are an aspect of the systems engineering process

• Ideally done early - how will you prove that you’ve met spec?

• Normally a separate test procedure document

• Our approach - let the test script be the procedure (interleave prose with code)

• Thereby minismising drift

• The same fixture used for procedures, produces reports

Procedures and Reports

• Detailed test procedures are an aspect of the systems engineering process

• Ideally done early - how will you prove that you’ve met spec?

• Normally a separate test procedure document

• Our approach - let the test script be the procedure (interleave prose with code)

• Thereby minismising drift

• The same fixture used for procedures, produces reports

Outline
• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

Linearity test

1 " " " CBF l i n e a r i t y t e s t . " " "
2
3 async def t e s t _ l i n e a r i t y (
4 co r r e l a t o r : Corre latorRemoteControl ,
5 r ece i ve_base l i ne_co r r e l a t i on_p roduc ts :

Base l ineCor re la t ionProductsRece ive r ,
6 pdf_ repor t : Reporter ,
7) −> None :
8 r ece i ve r = rece i ve_base l i ne_co r r e l a t i on_p roduc ts
9

10 pdf_ repor t . step (" Se lec t a range of CW scales fo r t es t i ng . ")
11 cw_scales = [0 . 5 * * i fo r i i n range (10)]
12 pdf_ repor t . d e t a i l (f "CW scales : { cw_scales } ")

Linearity test
1 pdf_ repor t . step (" Se lec t a channel and compute the channel center

frequency fo r the D−sim . ")
2 se l_chan_center = r ece i v e r . n_chans // 3
3 channel_frequency = se l_chan_center * (r ece i ve r . bandwidth / r ece i ve r .

n_chans)
4 pdf_ repor t . d e t a i l (
5 f " Channel { se l_chan_center } selected , with center frequency " + f

" { channel_frequency /1 e6 : . 2 f } MHz. "
6)
7
8 pdf_ repor t . step (" Set EQ gain . ")
9 gain = compute_tone_gain (r ece i v e r = rece ive r , amplitude=max(cw_scales) ,

t a rge t _ vo l t age =110)
10
11 pdf_ repor t . d e t a i l (f " Se t t i ng gain to : { gain } ")
12 await c o r r e l a t o r . p r oduc t _ con t r o l l e r _ c l i e n t . request (" gain − a l l " , "

antenna_channel ised_vol tage " , gain)

Linearity test

1 base_corr_prod = await sample_tone_response (
2 r e l _ f r e q s =sel_chan_center ,
3 amplitude=cw_scales ,
4 r ece i ve r = rece ive r ,
5)
6
7 l i n e a r _ s c a l e _ r e s u l t = base_corr_prod [: , se l_chan_center]

Linearity test

1 # Normalise and compute the e f f e c t i v e rece i ved vo l tage va lue (from
power) f o r comparison to the requested va lue .

2 l i n e a r _ t e s t _ r e s u l t = np . sq r t (l i n e a r _ s c a l e _ r e s u l t / np .max(
l i n e a r _ s c a l e _ r e s u l t))

3
4 pdf_ repor t . step (" Compute RMS Voltage . ")
5 rms_voltage = np . sq r t (np .max (l i n e a r _ s c a l e _ r e s u l t) / r ece i ve r .

n_spectra_per_acc)
6 pdf_ repor t . d e t a i l (f "RMS vol tage : { rms_voltage : . 3 f } . ")
7
8 pdf_ repor t . step (" Compute Mean Square E r ro r (MSE) . ")
9 mse = np . square (cw_scales − l i n e a r _ t e s t _ r e s u l t) .mean ()

10 pdf_ repor t . d e t a i l (f "MSE i s : {mse} ")

Linearity test
1 # Generate p l o t wi th re fe rence
2 labe l s = [f " $2 ^ { { − { i } } } $ " fo r i i n range (len (cw_scales))]
3 t i t l e = " Power r e l a t i v e to input CW l e v e l "
4 x t i c ks = np . arange (len (cw_scales))
5 f i g = F igure ()
6 ax = f i g . subplots ()
7 ax . p l o t (20 * np . log10 (cw_scales) , l a be l = " Reference ")
8 with np . e r r s t a t e (d i v i de = " ignore ") : # Avoid warnings when the va lue

i s zero
9 ax . p l o t (20 * np . log10 (l i n e a r _ t e s t _ r e s u l t) , l a be l = "Measured ")

10 ax . s e t _ t i t l e (t i t l e)
11 ax . se t _ x l abe l ("CW Scale ")
12 ax . se t _ y l abe l (" dB ")
13 ax . legend ()
14 ax . se t _ x t i c ks (x t i c ks)
15 ax . s e t _ x t i c k l a be l s (l abe l s)
16 pdf_ repor t . f i g u r e (f i g)

Example Report

Example Report

Example Report

Example Report

Example Report

Outline
• Introduction

• MeerKAT (Extension) Correlator

• Systems engineering

• System level tests

• Example test

• Winding up

Benefits

• Finding problems before they go out into the wild

• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)

• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)

• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)

• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)

• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)

• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)
• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)
• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Benefits

• Finding problems before they go out into the wild
• Sometimes this involves confronting unpleasant realities

• But it has helped us in the past

• and it continues to do so

• Value to collaborators (and potential collaborators)
• Run a mini-version on your laptop using Docker

• Play with code, understand how changes affect output

• Increases visibility and transparency in scientific process

Conclusion

Testing - it’s not just for little code snippets.
You can test big things as well!

CAPE TOWN Tel: +27 (0)21 506 7300 | 2 Fir Street, Black River Park | Observatory, Cape Town | South Africa 7925
HARTEBEESTHOEK Tel: +27 (12) 301 3100 l Farm 502 JQ, Hartebeesthoek, Broederstroom Road, Hartebeesthoek, 1740

Think any of this is cool? Come and work with us!

James Smith
DSP Engineer

Email: jsmith@sarao.ac.za

Save the trees, please don’t print the qualification reports!

	Introduction
	MeerKAT (Extension) Correlator
	Systems engineering
	System level tests
	Example test
	Winding up

